Chemguide – questions

TRANSITION METALS: VANADIUM

1. The central reaction in the Contact Process for the manufacture of sulphuric acid is

$$SO_2 + \frac{1}{2}O_2 \xrightarrow{V_2O_5} SO_3$$

where the vanadium(V) oxide functions as a catalyst. The reaction happens in two steps which depend on the vanadium's ability to vary its oxidation state. Write equations for those two steps.

2. If you warm a solution of ammonium metavanadate with zinc and moderately concentrated hydrochloric acid, the vanadium is reduced through its range of oxidation states. The mixture is warmed in a flask stoppered with cotton wool. The solution goes through these colour changes:

Solution A contains the VO₂⁺ ion. Other ions which are formed are V(H₂O)₆³⁺, V(H₂O)₆²⁺ and VO²⁺.

- a) What are the oxidation states of the vanadium in the ions VO_2^+ , $V(H_2O_6^{3+}, V(H_2O_6^{2+}))$ and VO^{2+} .
- b) Which are the main ions present in the flasks B, C, D, and E?

c) Describe and explain what happens if you pour the liquid contents of flask E into another container.

Don't waste time looking at the rest of the questions unless you are reasonably confident about redox potentials. If you *should* be confident, but *aren't*, go and sort out that topic before you continue with this one.

3. The E^0 values for the equilibria involved in the reduction of VO_2^+ to VO^{2+} are

 $VO_{2^{+}(aq)} + 2H^{+}_{(aq)} + e^{-}$ $VO^{2^{+}}_{(aq)} + H_{2}O_{(l)} = +1.00 v$ $Zn^{2^{+}}_{(aq)} + 2e^{-}$ $Zn_{(s)} = -0.76 v$

a) Explain how the given E⁰ values show that you can use zinc as a reducing agent in this reaction.

b) Work out the ionic equation for the overall reaction.

Chemguide - questions

4. The E^0 values for all the stages of the reduction of VO_2^+ are as follows.

 $VO_{2^{+}(aq)}^{+} + 2H_{(aq)}^{+} + e^{-} \qquad \qquad VO_{(aq)}^{2+} + H_{2}O_{(l)} \quad E^{0} = +1.00 \text{ v}$ $VO_{(aq)}^{2+} + 2H_{(aq)}^{+} + e^{-} \qquad \qquad VO_{(aq)}^{3+} + H_{2}O_{(l)} \quad E^{0} = +0.34 \text{ v}$ $V_{(aq)}^{3+} + e^{-} \qquad \qquad VO_{(aq)}^{2+} + H_{2}O_{(l)} \quad E^{0} = -0.26 \text{ v}$

Sulphur dioxide is a reducing agent, and dissolves in water to form sulphurous acid, H_2SO_3 . When it reduces something, it forms sulphate ions. The E^0 value for the change is given by

 $SO_{4}^{2-}(aq) + 4H^{+}(aq) + 2e^{-}$ $H_2SO_{3(aq)} + H_2O_{(l)} = +0.17 v$

If you treated VO_2^+ ions with sulphur dioxide under acidic conditions, what colour would the final solution be? Explain your answer.